Modulation of conductive elements by Pitx2 and their impact on atrial arrhythmogenesis.

نویسندگان

  • Diego Franco
  • Ana Chinchilla
  • Houria Daimi
  • Jorge N Dominguez
  • Amelia Aránega
چکیده

The development of the heart is a complex process during which different cell types progressively contribute to shape a four-chambered pumping organ. Over the last decades, our understanding of the specification and transcriptional regulation of cardiac development has been greatly augmented as has our understanding of the functional bases of cardiac electrophysiology during embryogenesis. The nascent heart gradually acquires distinct cellular and functional characteristics, such as the formation of contractile structures, the development of conductive capabilities, and soon thereafter the co-ordinated conduction of the electrical impulse, in order to fulfil its functional properties. Over the last decade, we have learnt about the consequences of impairing cardiac morphogenesis, which in many cases leads to congenital heart defects; however, we are not yet aware of the consequences of impairing electrical function during cardiogenesis. The most prevalent cardiac arrhythmia is atrial fibrillation (AF), although its genetic aetiology remains rather elusive. Recent genome-wide association studies have identified several genetic variants highly associated with AF. Among them are genetic variants located on chromosome 4q25 adjacent to PITX2, a transcription factor known to play a critical role in left-right asymmetry and cardiogenesis. Here, we review new insights into the cellular and molecular links between PITX2 and AF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis.

BACKGROUND Pitx2 is a homeobox transcription factor that plays a pivotal role in early left/right determination during embryonic development. Pitx2 loss-of-function mouse mutants display early embryonic lethality with severe cardiac malformations, demonstrating the importance of Pitx2 during cardiogenesis. Recently, independent genome-wide association studies have provided new evidence for a pu...

متن کامل

A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling

Spontaneous self-terminating atrial fibrillation (AF) is one of the most common heart rhythm disorders, yet the regulatory molecular mechanisms underlying this syndrome are rather unclear. MicroRNA (miRNA) transcriptome and expression of candidate transcription factors (TFs) with potential roles in arrhythmogenesis, such as Pitx2, Tbx5, and myocardin (Myocd), were analyzed by microarray, qRT-PC...

متن کامل

Multiple Roles of Pitx2 in Cardiac Development and Disease

Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequentl...

متن کامل

Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart

Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...

متن کامل

Current Perspectives in Cardiac Laterality

The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and conseq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2011